2017 Model Information

MODEL NAME: **Ninja H2**
MODEL CODE: **ZX1000XHF**

BUILT BEYOND BELIEF

The release of the 2015 Ninja H2 was met with astonishment. The culmination of an unprecedented level of inter-company collaboration within the Kawasaki Group, the world's only mass-produced supercharged supersport model was a testament to Kawasaki's technological prowess. Numerous engineering innovations made possible its phenomenal performance. Exquisite craftsmanship and styling caused heads to turn and jaws to drop. But what really impressed was the unique sensory experience offered by any who dared to ride it. The combination of intense acceleration and supersport-level circuit handling was unlike anything a naturally aspirated machine could provide.

For 2017, an upgraded Ninja H2 benefits from numerous updates, including Kawasaki's most advanced electronics package, and suppler suspension action care of a high-grade Öhlins TTX rear shock. Further, the standard model is joined by the Ninja H2 Carbon, a limited edition model featuring a carbon-fibre upper cowl. Ninja fans can look forward to an even more exhilarating experience.

★ New features
DEVELOPMENT BACKGROUND

The launching point for the development of the Ninja H2 was a strong desire to offer riders something they had never before experienced. Convinced that a truly extraordinary riding experience would not be found on a motorcycle that merely built on the performance of existing models, the design team committed to developing the "ultimate" motorcycle from a clean slate. The bike needed to deliver intense acceleration and an ultra-high top speed, coupled with supersport-level circuit performance. To realise this goal, help was enlisted from other companies in the Kawasaki Heavy Industries (KHI) Group, precipitating an unprecedented level of inter-company collaboration.

Development pursued two paths. The first was a closed-course model (Ninja H2R) that allowed an unadulterated pursuit of performance free of the limitations that street riding would impose. This was followed by a street model (Ninja H2), based closely on the closed-course model, that would meet all market regulations. The results were incredible, with both models offering a sensory experience surpassing anything that riders can find today.

The Ninja H2 is powered by a supercharged engine based closely on that developed for the over 300 PS Ninja H2R. High output notwithstanding, the compact design is on par with power units found in supersport litre-class models. The key to achieving this incredible performance was in the engine's supercharger—a motorcycle-specific unit designed completely in-house with technology from the Gas Turbine & Machinery Company, Aerospace Company and Corporate Technology Division.

KHI Group technology was not limited to the supercharger. Advanced technological know-how shared from other group companies is found throughout the innovative engine and chassis designs. For example, the aerodynamic mirror stays that add stability for high-speed riding were designed with assistance from Kawasaki's Aerospace Company. This is only one of many examples, but such inter-company collaboration and the level of resultant technology poured into this model is the reason the Kawasaki River Mark is displayed prominently on the upper cowl.

When it came time to name this model, using "Ninja"—a name synonymous with Kawasaki performance and shared by many legendary models over the years—was an obvious choice. But it is also named for another epoch-making model: the "H2" (also known as the 750SS Mach IV), powered by a 2-stroke 748 cc Triple, had an intense acceleration that made it a worldwide sensation. For a model that delivers supersport-level handling coupled with the kind of acceleration no rider has experienced before, we can think of no better name.
THE QUEST FOR POWER

In order to be able to offer intense acceleration, it was essential that the engine be able to produce big power. While a large-displacement engine could easily provide a high engine output, to ensure a lightweight, compact overall package a compact engine was also desired. Using a supercharged engine enabled both of these engine design requirements to be met: the Ninja H2 has a maximum output of 200 PS and its engine size is on par with other supersport litre-class power units. Aside from minor differences in the engine unit, and intake and exhaust systems tailored for street use to ensure it meets noise and emissions standards, the supercharged engine is essentially the same as the over 300 PS engine of the closed-course Ninja H2R, delivering an intense acceleration unlike anything you can experience on a naturally aspirated bike. Designed in-house, the immense potential of the highly compact, highly efficient engine is a testament to the technology possessed by the KHI Group.

Supercharged 998 cc In-Line Four

In-house-designed Supercharger

The supercharger used in the Ninja H2 was designed by Kawasaki motorcycle engine designers with assistance from other companies within the KHI Group, namely the Gas Turbine & Machinery Company, Aerospace Company, and Corporate Technology Division. Designing the supercharger in-house allowed it to be developed to perfectly match the engine characteristics of the Ninja H2. The highly efficient, motorcycle-specific supercharger was the key to achieving the maximum power and the intense acceleration that engineers wanted to offer.

★ One of the greatest benefits of designing the supercharger in-house and tailoring its design to match the character of the Ninja H2 engine was that engineers were able to achieve high-efficiency operation over a wide range of conditions— something that would not have been possible by simply dropping in or trying to adapt an aftermarket automotive supercharger.
The importance of high efficiency in a supercharger is that, as the air is compressed, power-robbing heat gain is minimal. And while many superchargers are able to offer high-efficiency operation in a very limited range of conditions, the supercharger designed for the Ninja H2 offers high efficiency over a wide range of pressure ratios and flow rates—meaning over a wide range of engine speeds and vehicle speeds. This wide range of efficient operation (similar to having a wide power band) easily translates to strong acceleration.

The supercharger’s high efficiency and minimal heat gain meant that an intercooler was unnecessary, which greatly saves weight and space.

The supercharger the engineers designed is a centrifugal-type unit—ideal for high-rpm performance—with a cast aluminium housing.

The unit is located centrally, behind the cylinder bank, which is the best position to efficiently provide compressed air to all four cylinders evenly.

The supercharger is driven by a planetary gear train, which runs off the crankshaft. Designing the gear train using technology from Kawasaki's Aerospace Company resulted in a very compact unit, with minimal power loss.

Power Unit Designed to Withstand the 300 PS Output of the Closed-course Ninja H2R

Despite its familiar In-Line Four configuration, the Ninja H2 power unit is loaded with technology developed specifically for this supercharged engine: some new, others with know-how from the Kawasaki Group. Every component of the engine was chosen to achieve a certain function. The whole engine was designed to accommodate the higher air pressure from the supercharger as well as ensure a high reliability with the over 300 PS output of the closed-course Ninja H2R. In fact, aside from its camshafts, head gaskets and clutch, the engine unit is exactly the same as the unit designed for the Ninja H2R.

While the intake valves are stainless steel, the exhaust valves needed to be able to handle the supercharged engine’s high-temperature exhaust gases. They are formed from two materials, friction-welded at the centre: inconel—an extremely heat-resistant alloy—is used for the head and lower half of the stem; heat-resistant steel is used for the upper half. The stems are tapered, varying in diameter from ø4.5-5 mm.

Pistons are cast pieces—cast pistons offer better strength than forged pistons for the very high temperatures generated by the high-performance engine. A unique casting process (similar to forging process) sees unnecessary material removed and hollows created to achieve the ideal thickness. This enables a light weight on par with forged pistons.

Dog-ring Transmission

To facilitate smooth, quick shifting, a dog-ring type transmission was selected. This is the kind of transmission commonly found in MotoGP or Formula 1, and was developed with feedback from the Kawasaki Racing Team.

Unlike a standard motorcycle transmission in which shift forks slide the gears into position, with a dog-ring transmission the gears all stay in place. Only the dog rings move, sliding into position to engage the desired gear.

Because the dog rings are much lighter than transmission gears, this type of transmission offers a much lighter shift effort. Shift touch is also improved, and a much shorter shift time is possible—which facilitates quick acceleration.

Hydraulic Assist & Slipper Clutch: Light Lever Operation

A high-quality hydraulic clutch offers less maintenance, ensuring the initial touch condition can be maintained. And with Brembo components, superb linearity and smooth actuation are also benefits.

Assist & Slipper Clutch uses two types of cams: an assist cam and a slipper cam.
MAXIMISING AIRFLOW EFFICIENCY

All engines need to breathe. In addition to ensuring the engine has sufficient air, how the air is supplied is another concern. To maximise performance of the supercharged engine, airflow efficiency was of paramount importance. How air enters the supercharger, how the compressed air enters the engine, and then how the combusted fuel-air mixture is discharged were all carefully analysed for maximum efficiency and to ensure the airflow characteristics that would best match the desired engine character.

Ram Air Intake

★ Air supplied to the supercharger enters via a single Ram Air intake in the left side of the upper cowl. The total frontal area is approximately 6,500 mm², about 3x the area of the supercharger entrance.
★ Ram Air duct was designed to take the fresh air to the supercharger in as straight a line as possible. Its shape was derived to match the impeller characteristics, further contributing to the engine’s high output.

Electronic Throttle Valves

Kawasaki’s fully electronic throttle actuation system enables the ECU to control the volume of both the fuel (via fuel injectors) and the air (via throttle valves) delivered to the engine. Ideal fuel injection and throttle valve position results in smooth, natural engine response and the ideal engine output. The system also makes a significant contribution to reduced emissions.

Exhaust System

★ Entrance to the header pipes is ovular to match the dual exhaust ports per cylinder. Partly formed by hydroforming, each header pipe tapers from an ovular to a round cross-section. The collector pipes are also hydroformed.
★ The exhaust system also includes a compact under-engine pre-chamber, with a double-wall construction for high rigidity. This construction helps reduce radiating noise and exhaust noise with a small volume.
★ Changes to the exhaust system to meet Euro 4 emissions requirements (does not affect models from USA/CAN/BRA) include:
 - collector layout revised (1-2 join 3-4 >> 1-4 join 2-3)
 - silencer internals updated
 - catalysers increased
 - catalyser material revised for longer catalyser life.

INNOVATIVE CHASSIS DESIGN

Trellis Frame

Using a trellis frame construction offered an elegant, lightweight solution to meeting the performance requirements for the chassis of the closed-course model. Able to harness the massive power of its more than 300 PS* engine, it has a balance of stiffness and flexibility that enables a very high level of stability while being able to handle external disturbances at high speeds. Its open design also helps effectively dissipate heat generated by the supercharged engine.
★ Pipe diameter, thickness and bend of each piece of the trellis frame were carefully selected to obtain the necessary stiffness for that part of the frame. The trellis pieces are made primarily from high-tensile steel.

* H2-R
STOPPING, GOING & TURNING

Front Suspension

KYB AOS-II racing suspension (first used on an on-road bike on the 2015 Ninja H2/H2R) offers superb road-holding performance.

- Based on the Air-Oil Separate cartridge fork developed for motocross racing, this is the industry's first use of this high-performance racing suspension on an on-road motorcycle.
- Designed for low friction, the ø43 mm front fork offers superb action: smooth initial action is followed by strong damping at the end of the stroke.
- As the suspension works, a large ø32 mm free-floating piston at the bottom of the oil-damping cartridge pumps oil up to a sealed area between the inner and outer tubes. The oil in this area provides a friction-reducing film on which the tubes can slide against each other, resulting in extremely smooth action.

Öhlins TTX36 Rear Suspension

The addition of Öhlins' highly acclaimed TTX shock offers numerous rider benefits:

- Increased rear stability, which contributes to enhanced cornering performance.
- Supple suspension action conveys the feeling of excellent damping and contributes to increased riding comfort and sportier handling in the hills.
- Increased rear stability also contributes to a more planted feel at the front, contributing to increased rider confidence when riding on the circuit.
- Superb feedback from the road.
- On the highway the bike feels even more stable at speed, and lane changes are executed more easily.
- Around town, the supple suspension absorbs bumps with ease, adding to ride comfort.

- Compression and rebound damping are each 22-way adjustable. TTX GP-style damping adjuster knobs can be adjusted by hand or with an Allen key, and feature a high-quality machined finish.
- Öhlins' TTX shock units feature a patented concept with a unique concentric twin tube design, together with a solid main piston—that is, the piston has neither an orifice, nor shims, its sole duty is to move the oil in the cylinder. The damping generating components are all located at the top of the cylinder between the cylinder head and oil reservoir tank. This simple construction allows the shock's various components to be lighter and more compact, ensures very stable damping performance and reduces the risk of cavitation.
- Because this construction makes it difficult for cavitation to occur, gas pressure can be about half that of a standard shock. This in turn allows lower tension seals to be used, which reduces friction loss and allows smoother shock action.
- Also, the twin tube design features separate channels connecting the compression valve to the compression side of the main piston and the rebound valve to the rebound side of the main piston, giving the possibility to have completely separated adjusters for compression and rebound damping. This facilitates setting up the bike, as changing one damping setting will not affect the other.
- Also contributing to the TTX shock's minimal friction loss, the ø36 mm main piston, inner and outer cylinders are all made from lightweight, highly rigid aluminium alloy.
- Remote preload adjuster makes it easy to adjust settings without tools to suit rider preference.
- Top of the rear shock mounts to the Swingarm Mounting Plate. (Again, no need for frame cross-members.)
- The bottom of the rear shock is mounted via Uni-Trak linkage that offers excellent feedback regarding the rear tyre's grip condition to the rider. Situated below the swingarm, the linkage also mounts to the Swingarm Mounting Plate.
- Updated linkage ratios contribute to a firmer, more stable feeling when riding on the circuit.
Brembo Brakes

Given the Ninja H2's high-speed potential, the brakes chosen were the best available for a mass-production model. Special tuning then ensured that all play was removed from the system, so that when the brakes were called for they would respond immediately.

★ A pair of massive ø330 mm Brembo semi-floating discs with a thickness of 5.5 mm deliver superb braking force.
★ Grooves running down the centre of the outer edge of the discs increase their surface area for greater heat dissipation.
★ Dual radial-mount Brembo cast aluminium M50 monobloc calipers grip the front discs. The highly rigid opposed 4-piston calipers with ø30 mm pistons contribute to the Ninja H2's superb braking force, as well as a high-quality image.
★ Brembo radial-pump master cylinder and reservoir receive extra attention before being shipped to Kawasaki. Each part is examined and adjusted to eliminate any ineffective (idle) stroke.
★ A large ø250 mm disc generates strong braking force at the rear.

AERODYNAMICS

Aerodynamically-designed Bodywork

It is no accident that when viewed from the side, the Ninja H2 does not seem to have the aggressive forward-canted stance of most modern supersport models. While supersport bikes use their front-leaning attitude to aid in quick steering, at the speeds for which the closed-course Ninja H2R was designed, such a posture would create drag that would hinder top speed aspirations. Instead, the stance is very neutral, almost flat—think Formula 1 car—to make the body as aerodynamically sleek as possible.

★ Aerodynamically shaped upper cowl uses lips and lines to help direct airflow over its surface.
★ Upper cowl positions the Ram Air intake in the most efficient position.
★ Compact side cowls and under cowls were designed to assist with heat dissipation.
★ The rear cowl has an extremely compact three-piece design. The centre portion is taller, creating an aerodynamic form that helps smooth airflow as it passes the rider. Wind is also able to pass between the centre and side pieces, reducing air resistance.

Downforce Generation

In order to maintain both straight-line stability and the control to change direction while running at high speed, the Ninja H2 features a number of aerodynamic devices to ensure the front wheel has strong contact with the ground.
★ Design of the upper cowl incorporates a chin spoiler. This is not a cosmetic flourish; the downforce it creates contributes to high-speed stability.
★ Contributing to high-speed stability, the Ninja H2 features mirror stays with airfoil cross-sections. Like the wings on the closed-course model, they were also designed by Kawasaki's Aerospace Company. Their trailing edges are equipped with Gurney flaps that increase the effectiveness of the simple airfoil shape, allowing greater downforce to be generated with a smaller surface.
Man-Machine Interface

Although the Ninja H2’s high performance cannot be denied, since it was not intended to be a race bike designed to turn quick lap times as efficiently as possible, it did not need the spartan accommodation found on most purpose-built supersport models. The man-machine interface enables riders to enjoy the bike’s performance with a modicum of comfort. While the riding position, ergonomics and cockpit layout were all designed first and foremost to put the rider in the best position to control this amazing machine, the impression from the rider’s perspective is one not of austerity, but rather plush quality, high-tech control, and an impeccable fit and finish.

Seating for One

Riding Position & Ergonomics

The kind of riding for which the Ninja H2 was designed, and a desire for a compact overall package resulted in a riding position similar to that of a supersport without being quite as aggressive. As enjoyment of the intense acceleration and high-speed capabilities was the first priority, a solo seat for the rider is the only seating provided.

★ The riding position was designed for riding at high speed and circuit riding. The rider triangle is similar to that of the Ninja ZX-10R, but more relaxed.

★ To help support the rider during strong acceleration, hip-supporting pads flank the rear of the seat. The hip support is adjustable 15 mm backward to suit rider size.

Instrumentation & Controls

The advanced, high-tech design of the instrumentation conveys the image of piloting a jet fighter aircraft. Handle control switches put all mode selection and display options at the rider’s fingertips.

★ The instrumentation design combines a full digital LCD screen with an analogue-style tachometer.

★ LCD screen uses a black/white reverse display (white characters on a black background), contributing to the high-quality image. In addition to the digital speedometer and gear position indicator, display functions include: odometer, dual trip meters, current mileage, average mileage, fuel consumption, coolant temperature, boost indicator, boost (intake air chamber) temperature, stopwatch (lap timer), clock and the Economical Riding Indicator.

★ New instrument features include bank angle display and max bank angle recording function (possible thanks to the addition of the Inertial Measurement Unit), an updated boost indicator, and an IMU indicator. (Illustrations)

★ Tachometer design uses an actual needle, but the black dial “face” looks blank until the engine speed increases. Backlit rpm numbers light up to chase the tachometer needle as it moves around the dial.

★ In preparation for an aftermarket data logger, a CAN coupler is provided inside the canopy.
ELECTRONIC RIDER SUPPORT

Complementing the Ninja H2’s incredible engine and chassis performance, advanced electronics work behind the scenes to provide rider support. Depending on rider preference, many of the systems may be turned off. And while the high-performance engine was designed to be accommodating even without the benefit of electronic assistance, when electing to fully experience the Ninja H2’s intense acceleration or high-speed potential, these systems are available to provide an extra degree of rider reassurance.

★ KCMF (Kawasaki Cornering Management Function): Total Engine & Chassis Management Package

The strength of Kawasaki’s cutting-edge electronics has always been the highly sophisticated programming that, using minimal hardware, gives the ECU an accurate real-time picture of what the chassis is doing. Kawasaki’s proprietary dynamic modelling program makes skilful use of the magic formula tyre model as it examines changes in multiple parameters, enabling it to take into account changing road and tyre conditions. The addition of a Bosch IMU (Inertial Measurement Unit) and the latest evolution of this advanced modelling software bring the electronic management systems on the Ninja H2 to the next level—changing them from setting-type and reaction-type systems to feedback-type systems—to deliver even greater levels of riding excitement. KCMF monitors engine and chassis parameters throughout the corner—from entry, through the apex, to corner exit—modulating brake force and engine power to facilitate smooth transition from acceleration to braking and back again, and to assist riders in tracing their intended line through the corner. On the Ninja H2, KCMF oversees the following systems:
- KTRC (including traction, wheelie and sliding control)
- KLCM
- KIBS (including pitching and corner braking control)
- Kawasaki Engine Brake Control
Enhanced Chassis Orientation Awareness: Bosch IMU (Inertial Measurement Unit)

⭐ The use of Bosch's compact IMU allows an additional layer of precision to be added to the already high-level KTRC, KLCM and KIBS.
⭐ IMU enables inertia along 6 DOF (degrees of freedom) to be monitored. Acceleration along longitudinal, transverse and vertical axes, plus roll rate and pitch rate are measured. The yaw rate is calculated by the ECU using Kawasaki original software.
⭐ Additional feedback from the IMU gives an even clearer real-time picture of chassis orientation than the programming of the previous systems was able to predict. This enables even more precise management for control at the limit.

KTRC (Kawasaki TRaction Control)

The KTRC system used on the Ninja H2 combines the best elements of Kawasaki’s earlier traction control systems. Multi-level modes offer riders numerous settings to choose from, with each mode providing a different level of intrusion to suit riding conditions and rider preference, and all modes designed to manage output when a sudden slip occurs. The system offers both enhanced sport riding performance and the peace of mind to negotiate slippery surfaces with confidence.

⭐ Riders can choose from nine modes, each offering a progressively greater level of intrusion. Riders may also elect to turn the system off.
⭐ Modes 1-3 are for the circuit, Modes 4-6 for the street, and Modes 7-9 for wet pavement conditions. A Rain Mode is also available.
⭐ Because the sophisticated software bases its dynamic analysis on the chassis’ orientation relative to the track surface (rather than relative to a horizontal plane), it is able to take into account corner camber, gradient, etc, and adapt accordingly. It also automatically adjusts for tyre wear, different tyre profiles, high-grip tyres, and numerous other factors that setting-type systems treat as fixed parameters.
⭐ Using complex analysis, the system is able to predict when traction conditions are about to become unfavourable. By acting before slippage exceeds the range for optimum traction, drops in power can be minimised, resulting in ultra-smooth operation.
⭐ With the addition of the IMU, wheelie control is more precise, offering even smoother operation.
⭐ Rain Mode can be turned on and off independently from KTRC. Activating Rain Mode sets KTRC to Mode 9, and also limits power output, torque and response. Similar to a Low Power setting, maximum engine output is less than 50% of full, with a milder throttle response.
KLCM (Kawasaki Launch Control Mode)

Designed to assist the rider by optimising acceleration from a stop, KLCM electronically controls engine output to prevent wheelspin and minimise wheelies when launching.

★ Riders can choose from three modes, each offering a progressively greater level of intrusion. Each mode allows the rider to launch from a stop with the throttle held wide open.

KIBS (Kawasaki Intelligent anti-lock Brake System)

Kawasaki's supersport-grade high-precision brake management system is standard equipment on the Ninja H2. This is the same base system used on the Ninja ZX-10R, with programming and settings revised to suit the performance parameters of the Ninja H2.

★ High-precision brake pressure control enables the system to avoid reduced brake performance due to excessive pressure drops, allows lever feel to be maintained when KIBS is active, and ensures ABS pulses feel smooth (not heavy).
★ High-precision brake pressure control also offers a number of sport riding benefits:
 1. Rear lift suppression
 2. Minimal kickback during operation
 3. Accounting for back-torque
★ With feedback from the IMU, KIBS is able to incorporate a new function: corner braking control. Should riders use the brakes beyond the entrance to a turn (i.e. trail braking) or mid-corner (e.g. to avoid an obstacle), brake force is modulated to counter the tendency of the bike to stand up under braking. This assists riders in tracing their intended line through the corner instead of running wide.

Kawasaki Engine Brake Control

The Kawasaki Engine Brake Control system allows riders to select the amount of engine braking they prefer.

★ When the system is activated (by selecting "L" (Light) in the "KEBC" settings), the engine braking effect is reduced, providing less interference when riding on the circuit.

KQS (Kawasaki Quick Shifter)

The Ninja H2 was the first Kawasaki motorcycle to be fit standard with a quick shifter. For 2017, the quick shifter also enables clutchless downshifts.

★ Complementing the engine's strong power and the dog-ring transmission, a contactless-type quick shifter enables quick upshifts and downshifts for seamless acceleration and quick and easy deceleration.

Öhlins Electronic Steering Damper

Unlike a mechanical steering damper—in which the settings, once fixed, must cover all riding conditions and speeds—the damping characteristics are changed electronically according to vehicle speed, and the degree of acceleration or deceleration. At low speeds, the settings were chosen such that damping does not interfere with the bike's intrinsic lightweight handling. At high speeds, damping increases to provide enhanced stability.

★ Kawasaki's electronic steering damper was jointly developed with Öhlins, one of the most popular and respected manufacturers of steering dampers.
★ Electronic steering damper provides just the right amount of damping based on what the bike is doing. Using input from the rear wheel speed sensor (provided via the engine ECU), the electronic steering damper's ECU determines the vehicle's speed as well as the degree the bike is accelerating or decelerating.
Kawasaki Original Silver-mirror Paint

The silver-mirror paint used on the Ninja H2 was developed by Kawasaki specifically for motorcycles. Its highly reflective, sparkling glasslike metal appearance adds to the bike's stunning design. While paint similar in appearance may be found in custom circles, its use on the 2015 Ninja H2 was a first for a mass-production vehicle in either the automotive or motorcycle industries. Strict Kawasaki quality control measures ensure a long-lasting finish.

In the shade the paint appears black, but once in the sunlight its highly reflective surface takes on the appearance of the surrounding scenery. The stark difference in the way the paint appears in the light and the shade emphasises the beautiful curvature of the bike's sculpted bodywork.

The highly reflective surface is created by inducing a silver mirror reaction (a chemical reaction between a solution of silver ions and a reducing agent) that forms a layer of pure silver. This Ag layer is what creates the paint's glasslike metal appearance. Compared to candy paints, which use aluminium flakes to generate a sparkling effect, the Ag layer appears as a uniform metallic surface.

High-precision Production

Unlike a standard mass-production model, the high-precision production of the Ninja H2 requires greater hands-on participation by skilled Kawasaki craftsmen. Each step, from metalworking, treatment, welding, painting to assembly, fine-tuning and inspection is carefully attended to in order to create a product of superior quality. Within Kawasaki's Akashi Factory, production takes place in an area dedicated exclusively to the Ninja H2.
ENGINE

<table>
<thead>
<tr>
<th>Specification</th>
<th>ZX1000XHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Liquid-cooled, 4-stroke In-Line Four</td>
</tr>
<tr>
<td>Displacement</td>
<td>998 cc</td>
</tr>
<tr>
<td>Bore and Stroke</td>
<td>76.0 x 55.0 mm</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>8.5:1</td>
</tr>
<tr>
<td>Valve system</td>
<td>DOHC, 16 valves</td>
</tr>
<tr>
<td>Fuel system</td>
<td>Fuel injection: ø50 mm x 4 with dual injection</td>
</tr>
<tr>
<td>Intake system</td>
<td>Kawasaki Supercharger</td>
</tr>
<tr>
<td>Ignition</td>
<td>Digital</td>
</tr>
<tr>
<td>Lubrication</td>
<td>Forced lubrication, wet sump</td>
</tr>
</tbody>
</table>

DRIVETRAIN

<table>
<thead>
<tr>
<th>Specification</th>
<th>ZX1000XHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission</td>
<td>6-speed, return, dog ring</td>
</tr>
<tr>
<td>Clutch</td>
<td>Wet multi-disc, manual</td>
</tr>
<tr>
<td>Final drive</td>
<td>Chain</td>
</tr>
</tbody>
</table>

FRAME

<table>
<thead>
<tr>
<th>Specification</th>
<th>ZX1000XHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Trellis, high-tensile steel, with Swingarm Mounting Plate</td>
</tr>
<tr>
<td>Wheel travel:</td>
<td>front 120 mm, rear 135 mm</td>
</tr>
<tr>
<td>Tyre:</td>
<td>front 120/70ZR17M/C, rear 200/55ZR17M/C</td>
</tr>
<tr>
<td>Caster (rake)</td>
<td>24.5 degrees</td>
</tr>
<tr>
<td>Trail</td>
<td>103 mm</td>
</tr>
</tbody>
</table>

SUSPENSION

<table>
<thead>
<tr>
<th>Specification</th>
<th>ZX1000XHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front: Type</td>
<td>ø43 mm inverted fork with rebound and compression damping, spring preload adjustability and top-out springs</td>
</tr>
<tr>
<td>Rear: Type</td>
<td>New Uni-Trak, Öhlins TTX36 gas-charged shock with piggyback reservoir, compression and rebound damping and spring preload adjustability, and top-out spring adjustability, and top-out spring</td>
</tr>
</tbody>
</table>

BRAKES

<table>
<thead>
<tr>
<th>Specification</th>
<th>ZX1000XHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front: Type</td>
<td>Dual semi-floating ø330 mm Brembo discs</td>
</tr>
<tr>
<td>Caliper</td>
<td>Dual radial-mount, Brembo M50 Monobloc opposed 4-piston ABS</td>
</tr>
<tr>
<td>Rear: Type</td>
<td>Single ø250 mm disc</td>
</tr>
<tr>
<td>Caliper</td>
<td>Brembo opposed 2-piston</td>
</tr>
</tbody>
</table>

DIMENSIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>ZX1000XHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall length</td>
<td>2,085 mm</td>
</tr>
<tr>
<td>Overall width</td>
<td>770 mm</td>
</tr>
<tr>
<td>Overall height</td>
<td>1,125 mm</td>
</tr>
<tr>
<td>Wheelbase</td>
<td>1,455 mm</td>
</tr>
<tr>
<td>Ground clearance</td>
<td>130 mm</td>
</tr>
<tr>
<td>Seat height</td>
<td>825 mm</td>
</tr>
<tr>
<td>Curb Mass*</td>
<td>238 kg</td>
</tr>
<tr>
<td>Fuel capacity</td>
<td>17 litres</td>
</tr>
</tbody>
</table>

PERFORMANCE

<table>
<thead>
<tr>
<th>Specification</th>
<th>ZX1000XHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum power (with Ram Air)</td>
<td>158.3 kW {215 PS} / 11,000 rpm</td>
</tr>
<tr>
<td>Maximum torque</td>
<td>133.5 N.m {13.6 kgf.m} / 10,000 rpm</td>
</tr>
</tbody>
</table>

*Curb mass includes all necessary materials and fluids to operate correctly, full tank of fuel (more than 90 percent capacity) and tool kit

The specifications mentioned here apply to and have been achieved by production models under standard operating conditions. We intend only to give a fair description of the vehicle and its performance capabilities but these specifications may not apply to every machine supplied for sale. Kawasaki Heavy Industries, Ltd. reserves the right to alter specifications without prior notice. Equipment illustrated, colours and specifications may vary to meet individual markets.